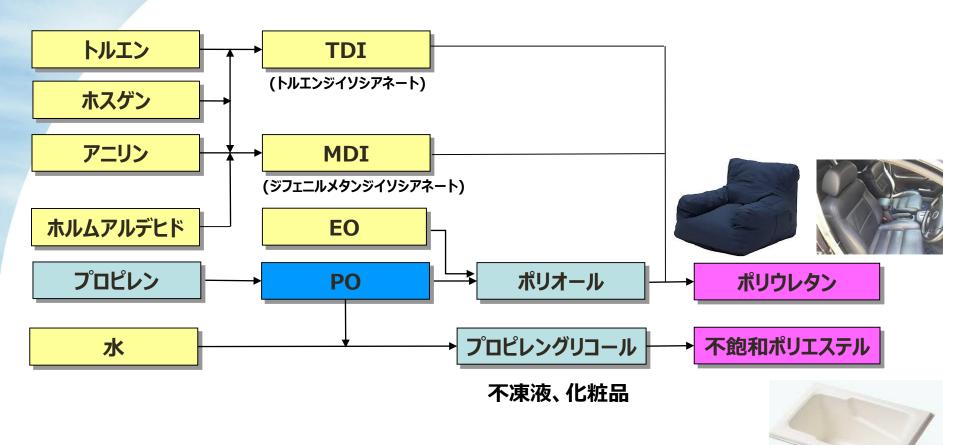
低環境負荷・併産品フリーの クメン法プロピレンオキサイド製造プロセスの 開発と工業化


住友化学株式会社

2020年12月22日

発表内容

- ① プロピレンオキサイド (PO) の用途と需要
- ② POの既存製法
- ③ 住友化学のクメン法PO(住友Ti触媒/プロセス)
- ④ クメン法と過酸化水素法(HPPO法)との比較
- ⑤ まとめと今後の展望

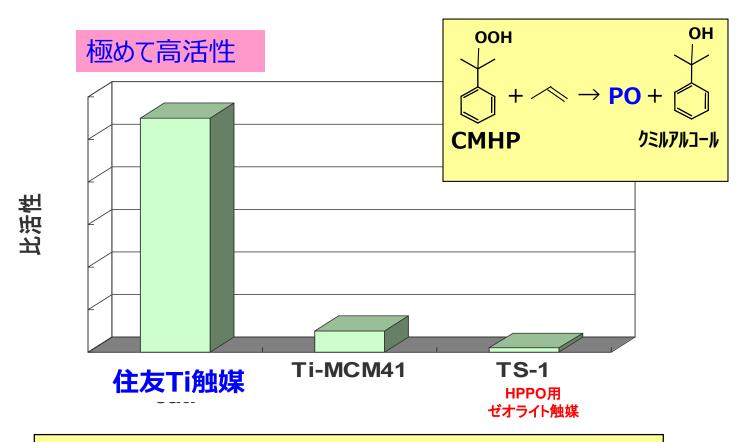
プロピレンオキサイド(PO)の用途と需要

- ➤ 世界需要; >10,000kT/y
- ➤ 成長率;3~4% (アジアにおける旺盛な需要)

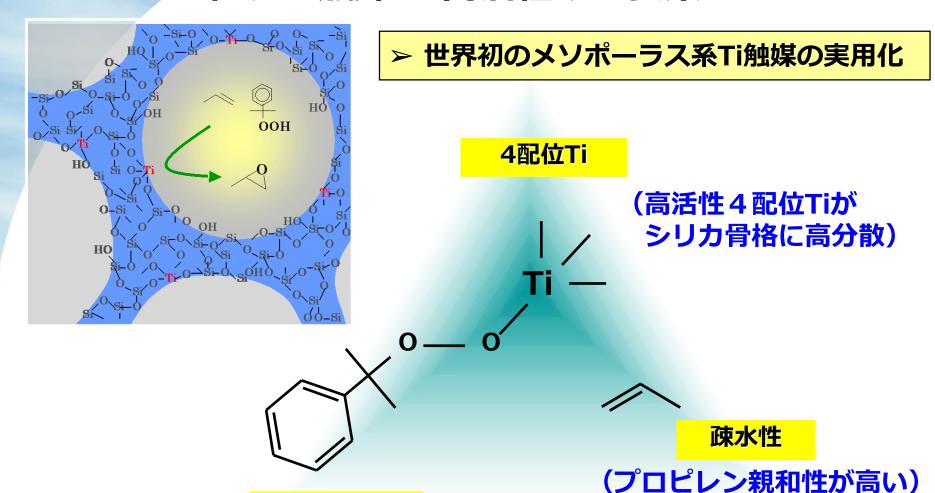
POの既存製法

	プロセス名	プロセスの特徴	種別
第1世代 (1930~)	塩素法	·大量の CaCl₂廃水	単産法
第2世代 (1970~)	・PO/スチレンモノマー(SM)・PO/t-ブチルアルコール(TBA)	・POに対し2倍以上の <mark>併産品</mark>	併産法
第3世代 (2003~)	クメン法	・安定した品質(国内外評価) ・高収率かつエネルギー消費少	低環境 負荷 単産法
	H ₂ O ₂ (HPPO)法	•H ₂ O ₂ の使用・取扱いに特別な 配慮が必要	

- ⇒ 塩素法は現在も約40%を占めるが、最近では環境に対する規制強化の動向により、新設による実施が難しくなっている
- ➤ 2015年以降の新設プラント (>20万T/年) では、第3世代の製法が 半分以上を占める


クメン法PO製造プロセス

高性能触媒とプロセス開発技術の融合により工業化

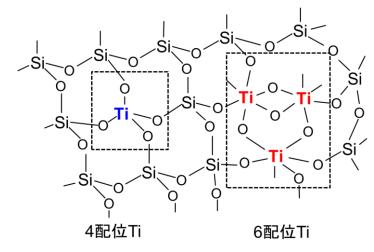

住友Ti触媒 - エポキシ化活性 -

反応基質であるプロピレンとCMHPが効率的に反応できるよう構造設計

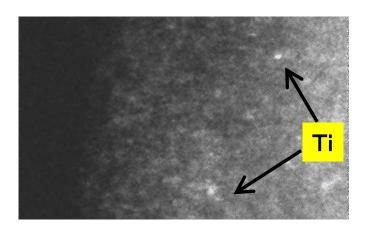
➤ 他のTi触媒に比べ圧倒的に高いエポキシ化活性

住友Ti触媒 - 高活性の三要素 -

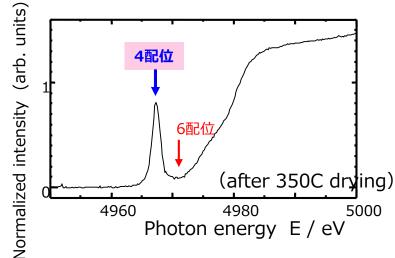
メソ細孔


(大きな分子の反応に有効なメソポーラス構造)

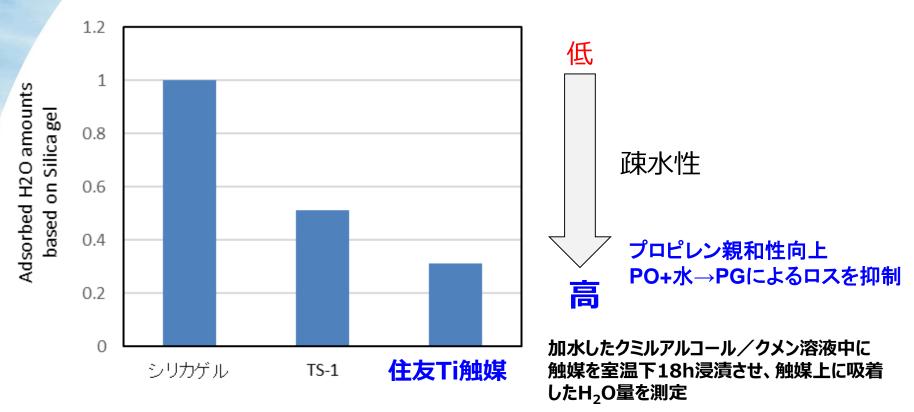
住友Ti触媒の特徴-4配位Ti-


Ti の配位状態:

4配位 → **活性点**


6配位 → 不活性

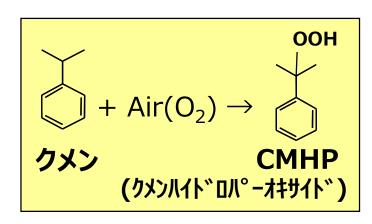
【高分解能STEM像】


【TI K端XANES分析】

➤ 住友Ti触媒中のTi種は4配位で高分散

住友Ti触媒の特徴-疎水性-

【水吸着特性】 シリカゲル、TS-1(ゼオライト)との H_2 O吸着量の比較



➤ 一般に疎水性が高いことが知られているTS-1よりも高い疎水性を達成

クメン法POプロセスー酸化工程ー

【特徴】

- > 無触媒下の自動酸化
- ➤ 他の製法で使用される過酸化物に比べ 反応速度大
- ➤ H₂O₂や他の有機過酸化物に比較して CMHPはより安定

→高安定性、高転化率、高収率(省エネに寄与)

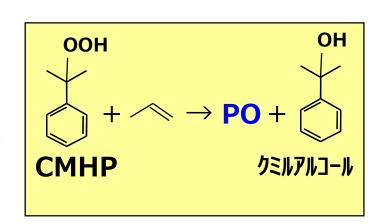
【ラジカル反応の速度定数(文献値)】

ROOH
$$\xrightarrow{k_i}$$
 radical $\xrightarrow{(RH)}$ R•

R•+O₂ \longrightarrow RO₂•

RO₂•+RH $\xrightarrow{k_p}$ ROOH+R•

2RO₂• $\xrightarrow{k_t}$ inert

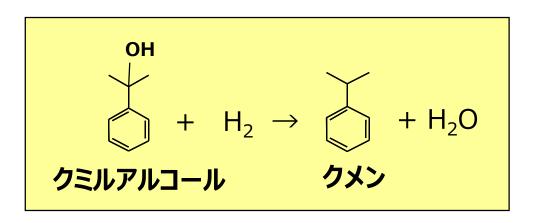

Comp.	k_p	$2k_t$	$k_{p}/(2kt)^{0.5}$	yield(%)
Cumene	0.72	0.04	35.6	84.8
Ethylbenzene	2.4	20	5.30	low

Rate constant at 60°C (L/mol·sec), yield at $d[O_2]/dt=10^{-4}(L/mol·sec)$

クメン法POプロセス-エポキシ化工程-

【特徴】

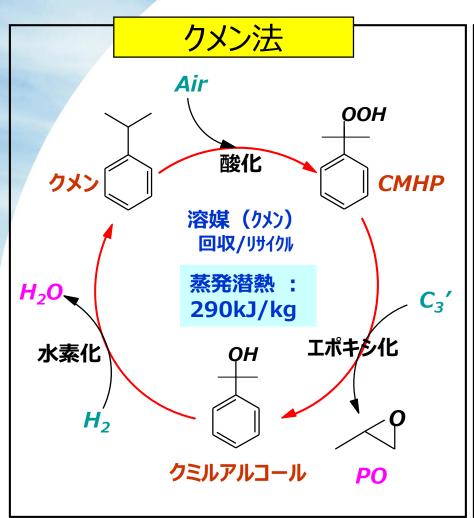
- ➤ クメンを溶媒とする非水系の反応
 - →高いPO収率
- ➤ シンプルな固定床反応器とエポキシ化 反応熱の効率的な回収を達成
 - →エネルギー使用量の削減

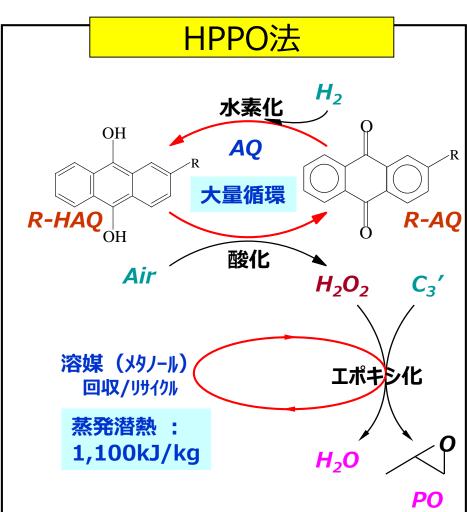

【HPPO法との条件比較】

	クメン法	HPPO法 ¹⁾
溶媒	クメン (非水)	水/メタノール混合
反応温度	>>50℃(CMHPの高い熱安定性) ⇒熱回収がしやすい	50℃程度に制限(H ₂ O ₂ 分解抑制と推測) ⇒ 熱の有効利用に制限
その他		H ₂ O ₂ の分解で発生するO ₂ の除去工程が 後段に必要

1)特許情報からの推定

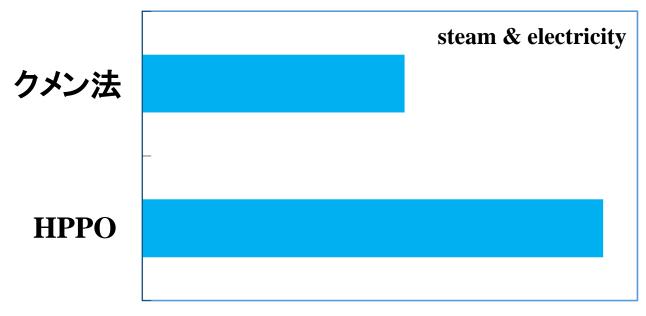
➤ HPPO法に比べ高収率かつ省エネルギーなプロセス


クメン法POプロセスー水素化工程ー



【特徴】

- ➤ 高活性・高選択性の貴金属触媒を使用
 - →ほぼ定量的にクメンを回収、酸化工程にリサイクル
- ➤ シンプルな固定床反応器と水素化反応熱の効率的な回収を達成 →エネルギー使用量の削減


HPPO法との比較

➤ HPPO法に比べ溶媒回収・リサイクルのエネルギー消費が少ない

クメン法とHPPO法のエネルギー原単位比較

Unit energy consumption based on Joule

※HPPO法は過酸化水素製造に使用されるエネルギーを考慮

➤ HPPO法に比べて約4割エネルギー消費が少ないと推測(当社調べ)

まとめと今後の展望

- ① 併産品を伴わない製造法 ~クメン循環の新概念~
- ② 高いPO収率 高性能エポキシ化触媒を用いる固定床プロセス (世界初のメソポーラス系Ti触媒実用化)
- ③ 従来法に比べ、エネルギー消費、廃棄物、廃水が少ない (酸化・エポキシ化・水素化の各反応熱の有効活用)
- ④ 省エネプロセスのライセンスを通じて、環境負荷低減に貢献 4件のライセンスを成約(現在も海外企業からの問い合わせ多数あり)

今後もグローバル展開を継続

クメン法 世界生産能力: 120万t-PO/年 世界シェア10%超(2023年予想)

